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Noonan syndrome (NS) is characterised by distinctive facial features, heart defects, variable

degrees of intellectual disability and other phenotypic manifestations. Although the mode of

inheritance is typically dominant, recent studies indicate LZTR1 may be associated with both dom-

inant and recessive forms. Seeking to describe the phenotypic characteristics of LZTR1-associated

NS, we searched for likely pathogenic variants using two approaches. First, scrutiny of exomes

from 9624 patients recruited by the Deciphering Developmental Disorders (DDDs) study uncov-

ered six dominantly-acting mutations (p.R97L; p.Y136C; p.Y136H, p.N145I, p.S244C; p.G248R) of

which five arose de novo, and three patients with compound-heterozygous variants (p.R210*/p.

V579M; p.R210*/p.D531N; c.1149+1G>T/p.R688C). One patient also had biallelic loss-of-

function mutations in NEB, consistent with a composite phenotype. After removing this complex
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case, analysis of human phenotype ontology terms indicated significant phenotypic similarities

(P = 0.0005), supporting a causal role for LZTR1. Second, targeted sequencing of eight unsolved

NS-like cases identified biallelic LZTR1 variants in three further subjects (p.W469*/p.Y749C, p.

W437*/c.-38T>A and p.A461D/p.I462T). Our study strengthens the association of LZTR1 with

NS, with de novo mutations clustering around the KT1-4 domains. Although LZTR1 variants

explain ~0.1% of cases across the DDD cohort, the gene is a relatively common cause of unsolved

NS cases where recessive inheritance is suspected.
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1 | INTRODUCTION

Noonan syndrome (NS) is a multisystem condition caused by dys-

regulation of RAS-MAPK signalling. Clinical features include a charac-

teristic facial gestalt (broad forehead, hypertelorism, downslanting

palpebral fissures, ptosis, small chin), posteriorly-rotated, low-set ears,

webbing of the neck, widely-spaced nipples, undescended testes and

short stature.1–3 Skeletal abnormalities can include pectus mal-

formations, spinal deformities and cubitus valgus. Heart defects such

as pulmonary stenosis or hypertrophic cardiomyopathy occur in a sub-

stantial fraction of patients and the association with intellectual dis-

ability has long been recognized.2,4,5 The NS phenotype is extremely

variable and not all features are observed in all patients. Heterogene-

ity also exists within families and many mildly affected adults remain

undiagnosed until the birth of a more severely affected child. The oft

quoted incidence rate of 1/1000-1/2500 live births5 may therefore

be an underestimate.

PTPN11 encodes a protein tyrosine phosphatase implicated in

RAS-MAPK signalling and was the first gene associated with NS,

responsible for ~50% of cases.6 Several other NS genes with roles in

RAS-MAPK signalling have subsequently been identified. These

include KRAS, SOS1, RAF1, NRAS, BRAF, RIT1 and SOS2.7 Despite

these gene discovery efforts, a small but significant fraction of cases

remain mutation-negative for known genes.

In contrast to other studies which concentrated on components

of RAS-MAPK signalling,8 unbiased exome sequencing of two large

Brazilian kindreds identified LZTR1 as the only gene harbouring rare,

predicted-deleterious variants co-segregating with NS consistent with

an autosomal dominant (AD) mode of inheritance.9 Identification of

three smaller families with mutations clustering around the same

protein-interaction domains supported LZTR1 as a novel NS gene

(MIM#616564).

Until recently, the mode of inheritance associated with NS has

exclusively been AD, with mutations arising de novo or inherited from

affected parents. Although sibling recurrence is occasionally seen in

families where parents are unaffected, such findings are typically

thought to be the result of genetic mosaicism.10 Indeed, PTPN11

mutations undergo positive selection during spermatogenesis.11,12

Nevertheless, speculation that an autosomal recessive (AR) form of

NS exists, first proposed >25 years ago,13 has persisted, supported by

the description of NS patients from consanguineous kindreds

(MIM#605275; NS2).14

A 2018 study involving two large NS families where AR inheri-

tance was considered likely identified overlapping linkage regions

each harbouring rare biallelic variants in LZTR1. Ten further families

were identified, making a total of 23 affected individuals with biallelic

alterations.15 In this study, we sought to identify patients with LZTR1-

associated NS across a well-defined clinical cohort by performing a

systematic analysis of 9624 exomes from the Deciphering Develop-

mental Disorders (DDDs) study. In addition, we used a targeted

sequencing approach, selecting clinically diagnosed NS families in

whom AR inheritance was considered likely, and performed detailed

phenotyping on all affected individuals to help delineate the

phenotypic/genotypic ranges of these conditions.

2 | MATERIALS AND METHODS

2.1 | Informed consent and exome sequencing

All patients described here (or their parents/legal representative) gave

informed consent to participate in this study. The DDD study (www.

ddduk.org) focuses on children with undiagnosed developmental dis-

orders and aims to develop translational genomics workflows to feed-

back potentially diagnostic findings.16 Patients were recruited from

the 24 Regional Genetics Services in the UK and Republic of Ireland

under Research Ethics Committee approval (10/H0305/83; Cam-

bridge South REC, and GEN/284/12; Republic of Ireland REC). Exome

sequencing methods have been described previously.16 Data analysis

involved mapping reads to hs37d5 and calling variants with

GATK/CoNVex. De novo variants were called using DeNovoGear.

The analysis described here was performed on a data freeze

corresponding to 7832 parent-parent-child trios and 1792 patient

singletons.

2.2 | Data availability

Data is accessible from the EGA archive (https://ega-archive.org/;

EGAS00001000775.)

2.3 | Variant filtering

Candidate variants in 9624 probands were identified across all genes

using the following steps:
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1. Minor allele frequency (MAF) was restricted to <0.1% for pro-

bands analysed as part of parent-child trios. This was reduced

to <0.01% (ExAC allele count of <5) for dominant variants in

singletons. Hemizygous variants had a maximum MAF of

<0.1% in trios/singletons and an ExAC hemizygous count = 0.

For recessive variants, MAF was required to be <1% in

trios/singletons.

2. Annotation using VEP17 had to predict the most severe conse-

quence to be a loss-of-function or protein-altering change.

Inherited variants predicted benign by PolyPhen2 were excluded.

Deletions/duplications had to be >1 Mb.

3. The genotypes and observed inheritance pattern had to be consis-

tent with dominant, recessive or X-linked modes of inheritance

Candidate variants were then interrogated, looking for specific

patients where there was at least one qualifying variant in LZTR1. For

such cases, we obtained vcf files, filtered lists of all candidate variants

in that individual, information about previously reported SNV/indels/-

CNVs and detailed clinical data.

2.4 | Analysis of human phenotype ontology terms

Clinical information was collected using human phenotype ontology

(HPO), a standardized vocabulary of phenotypic abnormalities (http://

human-phenotype-ontology.github.io/). The significance of pheno-

typic similarity between LZTR1-positive patients was estimated by

comparing similarity of HPO terms between the patients of interest to

that between randomly selected patients from the diverse DDD

cohort, as described.18,19

2.5 | Sanger sequencing, allele-specific PCR and
relationship confirmation

PCR amplification of LZTR1 was performed as described in Table S1.

An additional amplicon was included to capture intron 16 where var-

iants can lead to retention of an alternative exon.15 Following enzy-

matic purification, Sanger sequencing was performed using BigDye

(version 3.1) and the ABI 3730XL (Applied Biosystems, Foster City,

California).

Where parental samples were unavailable, compound-

heterozygous variants were phased by allele-specific PCR whereby

the 30-base of the first primer was complementary to either the wild-

type or mutant allele (Table S1). Sanger sequencing was then per-

formed to determine the sequence at the second locus. A similar

method was used to phase a de novo variant where the closest infor-

mative SNP was too distant to be phased by Illumina read-pairs

(Table S1).

For one family where the patient underwent exome sequenc-

ing as a singleton, maternity/paternity were confirmed by

genotyping nine short tandem repeat (STR) loci using the

AuthentiFiler PCR Amplification Kit (ThermoFisher Scientific, Wal-

tham, Massachusetts).

3 | RESULTS

3.1 | Four likely-pathogenic de novo LZTR1 variants
identified in patient-parent trios

Among 7832 parent-parent-child trios, exome sequencing uncovered

five patients with de novo missense mutations in LZTR1, all called with

high confidence (posterior probability for the de novo configuration,

pp_dnm >0.9). Of these, four clustered around kelch domains KT1-4

(codons 79-285, UniProt Q8N653), had CADD scores of 26-34 and

thus were deemed likely pathogenic. More genetic information and

clinical characteristics of these patients are in Table 1, Table S2 and

Figure 1A-C. The 5th de novo variant (c.2074T>G; p.F692V) lies out-

side KT1-4 and a hemizygous RPS6KA3 variant provides a better

explanation for the phenotype (https://decipher.sanger.ac.

uk/patient/266615).

Patient 303983 harbored a de novo c.290G>T; p.R97L variant

(NM_006767.3) within the KT1 domain of LZTR1 (Figure 2A). She

was recruited to DDD with suspected NS but PTPN11 and several

other NS genes were mutation-negative. Clinical features include a

typical NS gestalt (Figures 1A and S1A), hypertrophic cardiomyopathy,

a ventricular septal defect and short stature. She is planning to have

surgery on her spine due to kyphosis and anterior fusion of T9-12

intervertebral discs.

Patient 287232 harbored a de novo c.407A>G; p.Y136C variant

within KT2 (Figure 2B). Hypotonic at birth, this boy has a classical NS

gestalt, with coarse facial features, left-sided congenital ptosis, low-

set ears, pointed chin and pectus excavatum (Figures 1B and S1B). He

has mild pulmonary valve stenosis, short stature and developmental

delay (particularly affecting motor skills).

Patient 274799 harbored a de novo c.731C>G; p.S244C variant

within KT4 (Figure 2C). This boy had low-set, posteriorly rotated ears,

webbing of the neck and pectus carinatum, leading to a strong clinical

suspicion of NS. Mutations in PTPN11 and several other NS genes

had previously been excluded.

Patient 278971 harbored a nearby de novo variant (c.742G>A; p.

G248R, Figure 2C), also within KT4. Here, the de novo configuration

was less certain (pp_dnm = 0.93) but later confirmed by Sanger

sequencing of patient/parental DNA. Unlike the other de novo vari-

ants identified, p.G248R was reported in gnomAD as a singleton

(Table 1) and in two independent NS families.9,20 Patient 278971's

most significant clinical issues relate to perinatal asphyxia. She had

seizures in the neonatal period, which resolved for a period of time

but later recurred. Aged 8 years, she weighs only 16 kg. She attends a

special school, cannot read or write, walks only with an aid/frame and

has extremely limited speech. She had successful mitral valve surgery

3 years ago to control regurgitation. She now has marked

micrognathia such that intubation is always an ordeal. Although she

had/has features within the NS spectrum such as low-set ears, neck

webbing, pectus excavatum and mild cubitus valgus, facial features

are now atypical for NS (Figures 1C and S1C). No additional clinically

relevant genetic variants were identified and so we speculate that her

phenotype may have been complicated by antenatal/perinatal insults

which have resulted in severe intellectual disability and growth

restriction.
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FIGURE 1 Clinical images showing Noonan-like features in patients where consent was obtained. A, Patient 303983 aged 7.5 and 14 years

showing hypertelorism and low-set posteriorly rotated ears. B, Patient 287232 aged 5 years showing low-set ears, pointed chin and pectus
excavatum. C, Patient 278971 shown at 11 months and 3.7 years showing epicanthic folds and depressed nasal bridge and D, Patient 272332
aged 8.6 years and 10.2 years with interrupted eyebrow, long palpebral fissures, low-set posteriorly rotated ears, thin top lip and narrow chin. E,
Patient 279914 aged 6.8 years showing a convergent squint, ptosis, low-set posteriorly rotated ears and wide neck. F, Patient 284672 aged
8 years showing long face, hypertelorism, proptosis, downslanting palpebral fissures, retrognathia, macrodontia and a high, narrow palate. G,
Patient 284673 (284672's elder sister) aged 11 years—while both siblings had biallelic NEB variants, the elder sister did not have both LZTR1
variants and so is shown for comparison. Although both sisters have myopathy and bilateral ptosis, the younger sibling has a stronger NS
gestalt. H, Patient O1409410 aged 12 years showing down-slanting palpebral fissures, palpebral ptosis, low-set posteriorly rotated ears and fetal
finger-tip pads. I, Patient O1409412 aged 28 years showing a narrow nasal root and broad nasal tip
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3.2 | Analysis of singleton exomes identifies
additional de novo/inherited variants

A qualifying heterozygous variant in LZTR1 was identified in

25/1792 singleton exomes (Table S3). Of these, two were missense

changes involving KT1-4, both absent from gnomAD. The first of

these was a heterozygous c.406T>C; p.Y136H alteration in female

patient 269172 with significant cardiac abnormalities. The variant

notably disrupts the same codon as the de novo c.407A>G; p.

Y136C. We subsequently validated the variant (Figure 2B) and con-

firmed its absence from parental DNAs, consistent with it having

arisen de novo. In contrast, six other rare candidate variants

observed in 269172 were inherited from unaffected parents

(Table S4). Together with data from nine STRs, these results helped

confirm maternity/paternity. This patient's main clinical issues are

cardiac and include severe pre-ductal coarctation, bicuspid aortic

valve, “parachute” mitral valve and left atrial isomerism. Although

there is a mild NS-like gestalt, this was more prominent earlier in

development.

The second notable variant in a singleton was c.434A>T; p.

N145I in patient 271777 (III-4). His phenotype included global

developmental delay, learning difficulties, drooling, hyperreflexia,

hypertonia, periventricular leukomalacia and an abnormal/myopathic

long facial shape; in childhood it was suggested that he may have

NS. The same variant was detected independently in a first cousin

(III-1) using exome sequencing and a virtual RASopathy gene-panel.

III-1 has mild pulmonary stenosis, mild learning difficulties, a

webbed neck and facial features reminiscent of NS. A fuller descrip-

tion of this family and results of segregation testing in other mildly

affected family members is presented in Supporting Information,

Supplementary note 1.

FIGURE 2 Sanger validation of de novo mutations and distribution of autosomal dominant and recessive variants across LZTR1. A, Validation

data for the c.290G>T; p.R97L variant. B, Validation data for two de novo variants that disrupt Tyr136. C, Validation data for de novo variants
disrupting Ser244/Gly248 alongside other variants reported to be associated with Noonan syndrome (NS). D, Distribution of variants identified in
this study along the LZTR1 protein. Figure adapted from protein summary view at DECIPHER (https://decipher.sanger.ac.
uk/gene/LZTR1#overview/protein-info). Likely loss of function variants shown in red, missense and 5’-UTR variants shown in green
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3.3 | Phasing of de novo mutations

In the four cases where likely pathogenic de novo variants (p.R97L,

p.Y136C, p.S244C, p.G248R) were identified by trio exome

sequencing, informative intronic SNPs were identified 68 bp-136 bp

away (Table S5). For singleton patient 269172, the closest identifi-

able informative SNP was >5 kb away, so phasing of the p.Y136C

mutation was performed using allele-specific PCR (Table S1). In all

five cases, the de novo variant had arisen on the paternal chromo-

some (Table S5).

3.4 | Recessive LZTR1 cases and a “blended”
phenotype of NS and nemaline myopathy

Three unrelated individuals harbouring biallelic variants in LZTR1 were

found. These individuals were also identified in a global analysis of the

DDD cohort that sought to identify novel disease genes in addition to

quantifying the overall contribution of recessive variants to develop-

mental disorders.19 The variants identified were all rare, with gnomAD

MAFs of 1/241846 to 19/276182 and CADD scores of 23 to

40 (Table 1). Additional information for these patients is shown in

Table S6 and Figure 1D-F.

Patient 272332 inherited a c.1591G>A; p.D531N variant in trans

with c.628C>T; p.R210*. An unaffected brother only harbored the

p.D531N variant. Using the ACMG criteria for assessing

pathogenicity,21 p.D531N is ranked as a variant of uncertain signifi-

cance (VUS, Table S7). Cardiac features included hypertrophic cardio-

myopathy and mitral valve prolapse, requiring surgery; these led to NS

being considered as a potential diagnosis. Prior testing of PTPN11 was

negative. Although this male patient had low-set, posteriorly rotated

ears, a narrow chin, foetal fingertip pads and short stature, the facial

features of this patient were considered to be more suggestive of

Kabuki syndrome (Figures 1D and S1D). He has moderate to severe

intellectual disability, autism spectrum disorder and tonic-clonic sei-

zures which recently returned, aged 14 years.

Patient 279914 inherited a splice donor site variant (c.1149

+1G>T) and a c.2062C>T; p.R688C. Although prior testing for

PTPN11 and other NS genes was negative, the patient had a pre-

sumed NS diagnosis, with notable features including blue irides,

downslanting palpebral fissures, hypertelorism, low-set posteriorly

rotated ears (Figures 1E and S1E), pectus carinatum and short

stature.

Patient 284672 was recruited to the DDD study together with

her elder affected sister (284673). Loeys-Dietz syndrome, myotonic

dystrophy and facioscapulohumeral muscular dystrophy were pro-

posed as potential diagnoses but genetic testing for these condi-

tions did not detect any pathogenic variants (Table S6). Although

nemaline myopathy was considered another possibility, prior analy-

sis of NEB (NM_001271208.1) had been limited to testing for a

founder deletion involving exon55.22 Exome sequencing identified

rare biallelic variants in NEB in both siblings: c.78+1G>A in trans

with a novel c.21489-21493dupGACTG; p.A7165fs*84. In addition

to these NEB variants, the younger sister (284672) was found to

harbour the c.628C>T; p.R210* variant in LZTR1 in trans with a

c.1735G>A; p.V579M VUS. The older sister had not inherited both

LZTR1 variants. Our interpretation of data from this family is there-

fore that while both girls have nemaline myopathy, the younger sib-

ling has a more complex “blended” phenotype due to additional

biallelic variants in LZTR1. Consistent with this hypothesis, we note

that features specific to the younger sibling include hypertelorism,

pointed chin, webbed neck, a broad chest, pectus excavatum,

mitral-valve abnormalities and abnormal nuchal translucency scan

results during pregnancy. Comparison of facial features is also con-

sistent with the younger sibling having a more NS-like gestalt

(Figure 1F-G, Figure S1F-G).

3.5 | Phenotype comparisons using unbiased HPO
terms

To help support that the LZTR1 variants were of clinical relevance, we

tested whether the patients identified above were more similar than

expected by chance. Comparison of HPO terms for the four patients

in whom trio exome analysis had uncovered de novo dominant muta-

tions in KT1-4 domains of LZTR1 showed significant phenotypic simi-

larity (Table 1; P = 0.0478). Singleton patient 269172 was excluded

from this analysis as prioritisation of this case from a group of single-

tons had included review of phenotype information. Comparison of

the three patients with compound-heterozygous variants also showed

a degree of similarity, although this did not reach a formal level of sig-

nificance (P = 0.0629), as reported previously.19 Grouping the AD and

AR cases together increased the significance levels of phenotypic sim-

ilarity (P = 0.0019). Finally, we removed the AR patient (284672) with

biallelic mutations in NEB (as well as LZTR1) as we believed this

patient to have a “blended” phenotype, with features such as myopa-

thy and ptosis more likely due to NEB. This comparison of the

remaining six cases further increased levels of similarity (P = 0.0005).

3.6 | Biallelic LZTR1 variants in 3/8 patients with a
clinical diagnosis of NS

Our second mutation detection strategy involved Sanger sequencing

of LZTR1 in seven unrelated patients with a diagnosis of NS and one

with the clinically overlapping Costello syndrome. These patients had

all tested negative for multiple NS genes. Aiming to enrich the cohort

for AR forms of NS, six of these cases had been selected either due to

documented consanguinity or because of the presence of affected

siblings.

Patient O1409410 is a male with classic NS facial features

(Figures 1H and S1H). In this individual, we identified compound-

heterozygous variants c.1311G>A; p.W437* and c.-38 T>A (Table 1);

the latter introduces an alternative ATG codon out-of-frame with the

canonical start site. Such features in mRNA, also known as upstream

open reading frames (uORFs), can cause widespread protein expres-

sion changes in humans,23 in some cases resulting in disease.24,25 We

therefore speculated that c.-38T>A might alter the amount of wild-

type LZTR1 protein. Using a 100 bp sequence spanning the canonical

start site and the c.-38T>A locus we ran ATGpr/TISminer on wild-type

and mutant sequences. This analysis suggested that, while both sites

have an equally strong identity with the [A/G]XXATGG Kozak consen-

sus sequence, the novel ATG could have a higher reliability in initiating
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translation (Supplementary note 2). A reporter assay using a dual lucif-

erase strategy was performed, as described.23,25 The ratio of renilla to

firefly luciferase was consistently reduced to 77% to 85% for the

mutant 5’-UTR in comparison to the WT (Supplementary note 2). AR

inheritance had been suspected in this family as a male sibling (despite

normal early scans) developed polyhydramnios at 20 weeks gestation.

Severe fetal hydrops ensued and an emergency cesarean section was

performed at 38 weeks due to reduced fetal movements. The baby

died shortly after delivery. A postmortem showed an increased heart

mass of 24.6 g (normal 16.4 ± 5.7 g) but no structural abnormality.

Histology of skeletal and cardiac muscle showed an excess of muscle

spindles, noteworthy given reports of such anomalies in Costello syn-

drome.26 Sanger sequencing indicated that this individual harbored

both variants, while an unaffected sister did not.

Patient O1409412, a female with milder NS-like features

(Figures 1I and S1I) and severe hypertrophic cardiomyopathy, har-

bored compound-heterozygous variants; c.1407G>A; p.W469* and a

c.2246A>G; p.Y749C VUS. Allele-specific PCR (Table S1) was used to

indicate these variants lay in trans, later confirmed by testing parental

DNAs. Again, AR inheritance had been suspected in this family as a

male sibling born at 34/40 weeks had hypertrophic cardiomyopathy

and died at 18 months. DNA for this individual was unavailable for

testing.

Patient O1504902 harbored two rare missense VUSs 3 bp apart

(c.1382C>A; p.A461D and c.1385T>C; p.I462T). Allele-specific PCR

confirmed that the two variants lay in trans (Figure S2). This girl was

born to unaffected non-consanguineous parents, has cardiac hyper-

trophy and a NS-like appearance. No pathogenic variants were

detected in several other NS-related genes. A younger unaffected sis-

ter has not been tested. Sanger sequencing of LZTR1 in the other five

patients did not reveal any significant variants.

3.7 | Clinical comparison and Face2Gene analysis

Review of available photographs indicates that a depressed nasal

bridge in young children with narrow nasal root and broad nasal tip in

older children are characteristic features of LZTR1-associated NS. In

AD cases it appears that the face may elongate with age (Figure 1A,

C). Analysis of photos using the Face2Gene tool (www.face2gene.

com) showed that for 8/10 patients where photographs were

obtained, NS ranked highest for at least one age (Table 1). For 4/8 of

these matches, there was a high degree of similarity to NS (Figure S1).

Based on a patient described by Johnston et al15 and a subse-

quent case report, it was suggested that the phenotype seen in

LZTR1-associated NS may sometimes include growth hormone

(GH) deficiency.27 The case-series reported here supports this hypoth-

esis as 287232 had GH deficiency, with a GH stimulation test showing

only borderline responses and no rare variants were detected in

40 other genes linked to GH deficiency.

In the original LZTR1 report, cardiac abnormalities mainly involved

pulmonary stenosis.9 Only 287232, O1504902 and III-1 have pulmo-

nary stenosis in this case-series, with the most common cardiac

abnormality being hypertrophic cardiomyopathy, reported in 3/10 AD

and 4/6 AR cases, respectively (Table S2 and S6).

4 | DISCUSSION

In the present study, a systematic analysis of exome data from a large

cohort of patients with developmental disorders identified LZTR1

mutations in ~0.1% (9/9624) of cases. For 8 individuals the LZTR1

variant(s) are likely causative and in one further case we hypothesise

LZTR1 is contributing to a “blended” phenotype. This figure may be an

underestimate, given that non-coding variants such as c.-38T>A are

poorly captured by exome sequencing. Patients where deletions of

<1 Mb are playing a role would also have been overlooked due to the

filtering pipeline employed.

Yamamoto et al9 suggested AD-acting mutations are most likely

to occur in the KT1-4 protein interaction domains, in particular KT4.

Consistent with this, we identified de novo mutations at residues p.

S244 and p.G248 (Figure 2C). The two de novo mutations involving p.

Y136 (Figure 2B) may represent a novel hotspot. Further studies

describing other de novo disease-causing mutations will help refine

the regions implicated in the AD form of NS. A recent structural analy-

sis of LZTR1 indicates that AD-acting variants typically lie on the top

surface of a six-blade propeller-like structure.28 Most de novo variants

identified here fit with that pattern, however p.R97L and the familial

p.N145I are buried toward the side of the propeller structure; we sus-

pect these may abrogate phosphorylation (Supplementary note

3, www.matteoferla.com/LZTR1.html). In the AR form, compound-

heterozygosity often involves a LoF allele in trans with a presumed

hypomorphic variant, with mutations typically spread across the gene

(Figure 2D). The exception to this rule was O1504902 who harbored

missense variants at adjacent codons (Figure S2).

The clinical team responsible for O1504902 could not find (as of

April 2018) any accredited UK laboratories offering LZTR1 testing as

part of a NS service, despite the fact LZTR1 was first associated with

NS >3 years ago.9 This highlights the variable lag time for inclusion of

new genes on panels and hence the advantages of using an exome

sequencing approach. Together with the 4/50 incidence seen in a Bra-

zilian cohort,9 the 3/8 detection rate obtained from our targeted

sequencing approach emphasises the importance of updating

NS/RASopathy panels to include this gene. This is further supported

by the ClinGen Expert Panel's recent assessment of 19 genes associ-

ated with various RASopathies where the evidence for LZTR1 was cat-

egorised as strong.7 Virtual gene-panels (curated gene-lists used to

filter variants detected by exome/WGS analysis) are more readily

updatable. For instance, the RASopathy panel in PanelApp (https://

panelapp.genomicsengland.co.uk/panels/48/) revised the mode of

inheritance for LZTR1 from monoallelic to monoallelic/biallelic just

6 weeks after publication.15

NS is part of a clinical spectrum of conditions which include

Noonan-like disorders due to mutations in SHOC2, PPP1CB and

CBL, Costello syndrome caused by HRAS mutations and

cardiofaciocutaneous syndrome caused by disruption of BRAF,

MAP2K1 and MAP2K2. These disorders all result from dysregulation

of RAS-MAPK signalling so have collectively been termed the

“RASopathies”. LZTR1 has only recently been functionally linked to

RAS-MAPK signalling,20,28–30 which explains why its role in NS long

went unrecognised. For instance, the gene was absent from a list of
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789 RAS–ERK pathway genes prioritised by Chen et al8 such that the

pathogenicity of p.R237Q/p.A249P identified in that study was only

realised subsequently.9 Recent work by Motta et al indicates that mis-

sense alterations associated with AR inheritance typically influence

protein synthesis/stability or subcellular localization. In contrast,

mutations associated with the AD form are expressed normally but

enhance EGF-dependent ERK1/2 phosphorylation.28 Functional stud-

ies such as these are especially important for the missense alterations

described here where pathogenicity has not been conclusively

established (Table S7, Supplementary note 4).

The c.-38T>A variant we identified leads to a uORF. Several

examples exist in the literature of disease-causing variants in 5-‘UTRs

and reporter gene assays such as the one used here are commonly

used to confirm the effect of such variants upon translation. Examples

include a de novo c.-107G>A variant in SLC2A1 found in a patient

with glucose transporter deficiency syndrome and c.-263C>A/c.-

255G>A variants in TWIST1 in patients with Saethre-Chotzen

syndrome.24,25

Using a combination of parent-child exomes and allele-specific

PCR showed that 5/5 de novo mutations reported here occurred on

the paternal chromosome. Although a larger case-series is required to

reach significance, these results are notable given mutations in

PTPN11 and other RAS-MAPK genes can influence spermatogonial

selection and predominantly occur on the paternal chromosome.31 A

2004 study phased 14 de novo mutations in PTPN11 and found all

originated on the paternal haplotype.11 The mean paternal age in that

PTPN11-positive cohort was 35.6 years, 2.2 years above that for the

PTPN11-negative cases and 6.1 years older than the population aver-

age. Increased paternal age at conception and a similar bias in the

parental origin of de novo HRAS mutations have been documented in

patients with Costello syndrome.32,33 For the five cases with de novo

LZTR1 mutations described here, paternal ages at childbirth were also

elevated (mean = 35.8, Table S5) compared with the average across

this DDD datafreeze (mean = 32.6).

A recent study focussing on fetal malformations detected in utero

identified a case of non-immune hydrops fetalis with a homozygous

variant in LZTR1.34 Fetal hydrops was also observed in 4 non-liveborn

siblings described by Johnston et al.15 Together with siblings of

O1409410/O1409412, these results indicate that LZTR1 mutations

can result in a much more severe form of disease. Further studies

should aim to uncover the reasons for this extreme variability and

whether such lethal presentations of disease can also be associated

with the AD form of LZTR1-associated NS.

Combining our results with those described in the

literature,9,15,20,27 hypertrophic cardiomyopathy was reported in 5/26

of individuals with AD-acting mutations but 19/26 of those

harbouring biallelic variants (Tables S2 and S6). A systematic analysis

of cardiac involvement in larger clinical cohorts of patients with LZTR1

mutations is warranted to confirm whether this bias is reproducible.

In conclusion, our study strengthens the association of LZTR1

with AD/AR forms of NS. In the dominant condition, mutations cluster

around the KT1-4 domains. In the AR form, compound-heterozygosity

often involves a LoF allele in trans with a presumed hypomorphic vari-

ant. Although LZTR1 mutations explain only ~0.1% of cases in the

DDD study, the gene is a notable cause of unsolved NS cases, espe-

cially where recessive inheritance is suspected.
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