ASPECTOS ENDOCRINOLÓGICOS DE LOS SÍNDROMES DISMÓRFICOS

J Sánchez del Pozo, J Cruz Rojo, ME Gallego Gómez

Sección de Endocrinología, Nutrición y Dismorfología Infantil. Hospital 12 de Octubre. Madrid.

Sánchez del Pozo J, Cruz Rojo J, Gallego Gómez ME. Aspectos endocrinológicos de los síndromes dismórficos.

Protoc diagn ter pediatr. 2011;1:13-33

INTRODUCCIÓN

Los síndromes dismórficos son entidades que se caracterizan por compartir un conjunto de malformaciones mayores y menores; y en general, son de causa genética. Estas enfermedades, en su mayoría, se incluyen dentro del grupo de enfermedades raras, entendidas como tales, aquellas cuya frecuencia es menor de 1 cada 2000 habitantes. Aunque individualmente son raras, en conjunto la frecuencia global de estas enfermedades en la población es del 8%. Un 3% de los recién nacidos (RN) presentan defectos congénitos mayores y entre un 5-7% de los RN presentan defectos menores significativos; y un 1% de los RN presentan malformaciones múltiples.

Para poder valorar adecuadamente al paciente con dismorfias debemos conocer una serie de conceptos generales en este campo, entre los que se incluyen los conceptos de malformación, deformación, disrupción y displasia. Se entiende por malformación un defecto morfológico de órgano, parte de órgano o región corporal más grande del cuerpo resultado de un proceso de desarrollo intrínsecamente anormal. Deformación es un defecto morfológico de órgano, parte de órgano o región corporal más grande del cuerpo causada por fuerzas mecánicas no disruptivas (extrínsecas o intrínsecas). Disrupción es un defecto morfológico

de órgano, parte de órgano o región corporal más grande del cuerpo resultante de una interrupción o interferencia en un proceso de desarrollo originariamente normal. La causa de esta interrupción puede ser un proceso vascular, infeccioso, tóxico o bridas amnióticas). Displasia es una organización anormal de las células en los tejidos, originando las anomalías morfológicas consiguientes; entre las displasias se incluyen: hemangiomas múltiples, nevus pigmentados, etc.

Otros grupos de conceptos incluyen los conceptos de malformación o dismorfia mayor, dismorfia o malformación menor, variantes de la normalidad y equivalentes malformativos. Para evitar equívocos con el concepto real de malformación este término podría ser sustituido por dismorfia, desde este punto de vista se definiría malformación o dismorfia como la alteración morfológica de un órgano o región corporal tanto a nivel microscópico como macroscópico.

- Malformación o dismorfia mayor: es la desviación comprobada del curso del desarrollo que requiere atención médica o quirúrgica inmediata o demorada y que suele dejar secuelas.
- Malformación o dismorfia menor: es la desviación comprobada del curso del de-

sarrollo que no requiere obligada atención médica o quirúrgica y a lo sumo ocasiona problemas estéticos.

- Variantes de la normalidad: se incluyen en este grupo: variaciones en tamaño situados en + 1-2 DE; malformaciones presentes en al menos 4% de población control (variables étnicas, etc.) y también algunas de las malformaciones presentes al nacimiento que pueden considerarse periodos transitorios de adaptación (fimosis, obstrucción lacrimal, criptorquidia con descenso espontáneo)
- Equivalentes malformativos: forman parte de este grupo: Los síntomas o signos clínicos que pueden acompañar o formar parte de cuadros malformativos, siempre que se descarten de manera razonable otras causas adquiridas. Así, algunas alteraciones morfológicas que puedan deberse a causas tanto genéticas como adquiridas como la microcefalia o las cataratas, pueden incluirse en este grupo. Los equivalentes malformativos más reseñables son: el retraso psicomotor, el crecimiento intrauterino retardado, la talla baja prenatal y/o postnatal el hipercrecimiento, la hipotonía v otros.

Las malformaciones pueden ser simples o complejas. Entre las complejas se incluyen los conceptos de secuencia y defectos de campos de desarrollo.

Secuencia: es un patrón de anomalías o malformaciones múltiples derivados de una anomalía o malformación primaria presumida o conocida. Hay secuencias malformativas (Pierre-Robin: la microgna-

- tia es la malformación primaria, seguida de glosoptosis y fisura palatina); aunque también las hay deformativas (tortícolis congénita: plagiocefalia, tortícolis, asimetría facial) o disruptivas (bandas amnióticas).
- Defectos de campo de desarrollo: los campos de desarrollo son unidades embrionarias en las que el desarrollo de estructuras complejas derivados de ellas están sincronizadas de manera temporal y espacial; una alteración de estas estructuras embrionarias origina una serie de malformaciones derivadas de las mismas (por ejemplo, las malformaciones del primer arco branquial afectan al pabellón auricular, a la mandíbula y al párpado inferior).

A su vez, las malformaciones pueden estar aisladas o asociadas. Dentro de las malformaciones asociadas o patrón de malformaciones múltiples encontramos, las asociaciones, los síndromes y los patrones malformativos no encuadrables.

- Asociación: es la incidencia de malformaciones múltiples no aleatorias en dos o mas individuos que no son secuencia, ni defectos de campos de desarrollo, ni síndromes, en las que no puede establecerse un nexo común patogénico y podría comprenderse mejor como patrón de anomalías múltiples derivadas de la blastogénesis y que afecta de manera primordial a estructuras derivadas de la línea media. la mayor parte de las asociaciones se definen por acrónimos (VATER, CHARGE, MURCS).
- Síndrome: es un patrón de anomalías múltiples que se cree patogénicamente rela-

cionado y que no representa una secuencia o un defecto de campo de desarrollo.

Patrones de malformaciones múltiples no encuadrables: no cumplen las características de un síndrome específico; o que tras una búsqueda cuidadosa en base de datos no puede ser incluido en un grupo específico. Aunque no se dé un diagnóstico concreto, se pueden realizar aproximaciones diagnósticas mediante la delineación del síndrome o patrón malformativo.

Dentro de la etiología de los distintos patrones malformativos: el 60% de las malformaciones se presentan como malformaciones aisladas y aproximadamente un 40% se dan como malformaciones asociadas. De estos patrones malformativos múltiples, aproximadamente un 25-30% de ellos corresponden a cromosomopatías detectadas tanto mediante cariotipos convencionales aproximadamente un 8% y el 20% restante mediante nuevas técnicas como las reordenaciones subteloméricas (RST) y los microarrays. Un 20-25% de los pacientes con malformaciones múltiples son por Síndromes malformativos específicos por alteraciones monogénicas. Y aproximadamente un 40-50% de los pacientes con malformaciones

múltiples no tienen un patrón sindrómico específico o no pueden encuadrarse.

El sistema endocrino tiene un origen embriológico múltiple y anatómicamente está distribuido de manera difusa. La secreción de algunas glándulas está regulada por mecanismos de retrocontrol positivos o negativos a través de los ejes hipotálamo-hipofisario-glándulas periféricas; regulados por diversos genes. Las mutaciones, deleciones o duplicaciones de algunos genes pueden afectar a la expresión de factores de trascripción causando alteraciones en el tamaño de las distintas glándulas originando aplasias, hipoplasias, hiperplasias; o alteraciones activadoras o inhibidoras en el receptor, etc.

La patología endocrinológica es junto con la patología neurológica la mas frecuente afectada dentro de los síndromes malformativos. El número de patrones malformativos que se asocian con patologías endocrinológica se muestran en la tabla 1.

PATOLOGÍA DE CRECIMIENTO

Aproximadamente un 44% de patrones malformativos incluidos en la base POSSUM ma-

Tabla 1. Número de patrones malformativos que se asocian con patologías endocrinológicas.

Hipocrecimiento postnatal	1330 (44%)
Hipocrecimiento prenatal	378 (12,5%)
Defectos pituitarios	83 (2,8%)
Hipercrecimiento	74 (2,5%)
Hipogonadismos	258 (8,6%)
Patología tiroidea	108 (3,6%)
Patología paratiroidea	34 (1,1%)
Patologías suprarrenal	47 (1,5%)
Diabetes mellitus	92 (3%)
Obesidad	120 (4%)
	Datos extraídos de Base de Datos POSSUM (3000-3100 patrones malformativos).

nifiestan hipocrecimiento postnatal; el hipocrecimiento prenatal (CIR) también es frecuente aproximadamente un 12,5% de patrones malformativos incluidos en la misma base de datos; bastantes entidades incluyen ambos hipocrecimientos. Aproximadamente un 6% de las tallas menores de -3 DS son debidas a patología sindrómica y un 5% a patología cromosómica (Oxford Desk Reference).

Dentro de las causas de hipocrecimiento postnatal se incluyen grupos muy amplios de patología como las cromosomopatías y multitud de síndromes dismórficos cuya talla final se sitúa en muchos de ellos por debajo de la media de la población general; en la tabla 2 se expresan las tallas finales medias de algunos síndromes en relación con la talla media de población (estudio colaborativo español 2008).

Entre estas causas y en todas las niñas con talla baja de causa no aclarada dado que aproximadamente 1/3 de la población Turner pueden no tener un fenotipo característico se debe realizar un cariotipo para descartar esta posibilidad.

Hay múltiples causas adquiridas que pueden originar retrasos de crecimiento en la población sindrómica; muchos pacientes sindrómicos tienen cardiopatías severas y esto puede originar un fallo de medro que retrase el crecimiento: asimismo en los pacientes con retraso mental grave se asocia con mucha frecuencia reflujo gastroesofágico severo que puede comprometer el estado nutricional y afectar al crecimiento estatural.

Las malformaciones del sistema nervioso central y de línea media craneofacial se asocian con frecuencia a déficits hipofisarios (tabla 3) y habrán de ser monitorizados para detectar dicha patología..

Muchos síndromes relacionados con déficit de GH se desarrollan en la tabla 3

Otra causa frecuente de hipocrecimiento es el grupo de displasias óseas, originadas por alteraciones estructurales del crecimiento y modelado óseo; bien por alteración en la proteína principal de la matriz ósea o cartilaginosa que es el colágeno; o bien por alteración en la actividad osteoblástica u osteoclástica o factores de crecimiento y morfogéneticos implicados en el desarrollo (figura 1); las alteraciones de genes que regulan todos estos procesos darán lugar a las distintas displasias óseas; en la clínica debutaran con talla corta, habitualmente desproporcionada o con deformidades esqueléticas de columna y/o miembros o con fracturas patológicas.

Tabla 2. Talla final media de varones en algunos síndromes malformativos en relación con estándares de crecimiento 2008.

Síndrome de Down	156.0 em	2200	
	156,0 cm	−3,2 DS	
Síndrome de Williams	163,0 cm	−2,1 DS	
Síndrome de Rubinstein-Taybi	153,0 cm	−3,8 DS	
Síndrome de Cornelia de Lange	150,0 cm	−4,2 DS	
Síndrome de Noonan	160,0 cm	−2,5 DS	
Síndrome de Silver-Russell	149,5 cm	−4,3 DS	
Síndrome de Bloom	151,0 cm	-4,0 DS	
Acondroplasia	131,0 cm	−7,2 DS	

Tabla 3. Malformaciones y síndromes asociados a problemas de crecimiento.

Hipocrecimientos:

1. Postnatales:

- Disgenesia hipofisaria:
 - Agenesia/hipoplasia
 - Hipófisis ectópica/silla turca vacía
- Malformaciones del SNC y de línea media asociados a déficit GH:
 - Anencefalia/Holoprosencefalia
 - Anoftalmia/microftalmia
 - Labio leporino con o/sin hendidura palatina
 - Incisivo central único
 - Encefalocele transesfenoidal
 - Hendidura facial media
 - Aplasia cutánea medio facial v otras
 - Otras malformaciones
- Síndromes asociados a déficit de GH:
 - Síndromes con anomalías de línea media:
 - · Displasia septoóptica
 - · Síndrome EEC: ectrodactilia, displasia ectodérmica, labio leporino
 - · Síndrome de Aarskog: facio-digito-genital
 - · Síndrome de Rieger: oculares, dentarias
 - · Asociación CHARGE
 - · Síndrome de Pallister-Hall: hamartoma hipotalámico, polidactilia postaxial, ano imperforado, hipospadias
 - Síndromes con roturas cromosómicas y defectos inmunes:
 - · Anemia de Fanconi
 - · Síndrome de Bloom
 - · Ataxia-telangiectasia
 - Síndromes con anomalías hipotalamohipofisarias:
 - · Síndrome de Prader-Willi
 - · Síndrome de Bardet-Biedl
 - · Síndrome de Kearns-Sayre
 - Cromosomopatías:
 - · Deleciones instersticiales del cromosoma 14,15,18, 20
- Otros síndromes asociados a talla baja postnatal:
 - Cromosomopatías:
 - · Síndrome de Turner y variantes
 - · Síndrome de Down
 - Otros síndromes:
 - · Mutaciones gen SHOX: Sd. Leri-Weil
 - · Síndrome de Noonan
 - · Síndrome de Rubinstein-Taybi

2. Prenatales

- Sin estigmas malformativos
- Con mínimos estigmas malformativos:
 - Infecciones prenatales (To.R.C.H.).
 - Tóxicos: alcohol, anticonvulsivantes
- · Con estigmas malformativos:
 - Síndromes específicos:
 - · Silver-Russell
 - ·Shekel
 - · Brachman-De Lange
 - · Smith-Lemli-Opitz
 - Cromosomopatías

Tabla 3. Malformaciones y síndromes asociados a problemas de crecimiento.

Hipercrecimientos:

- 1. Asociados a hiperinsulinismo:
 - Hijo de madre diabética
 - Nesidioblastosis
 - Síndrome de Wiedeman-Beckwith
 - Síndrome de Perlman

2. Hipercrecimiento postnatal:

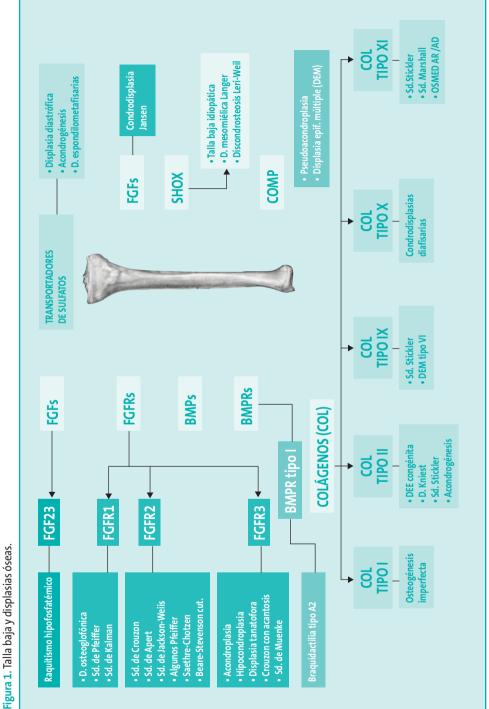
- Síndromes cromosómicos:
 - Síndrome de Klinefelter (47 XXY) y variantes
 - Trisomía XXX
 - Varón 47 XYY
 - Otras cromosomopatías: trisomía 8 mosaico//8 p+
 - Síndrome X frágil

Síndromes con hábito marfanoide:

- Síndrome de Marfan
- Aracnodactilia contractural de Beals
- Homocistinuria
- · Síndromes con macroglosia:
 - Síndrome de Beckwith-Wiedemann
 - Síndrome de Simpson-Golabi-Behmel
- Síndromes con macrocefalia:
 - Síndrome de Sotos o gigantismo cerebral
 - Sindrome de Weaver
- Sindrome de Bannayan-Riley-Ruvalcaba
- Otros síndromes:
 - Síndrome de Partington
 - Neurofibromatosis tipo I

3. Síndromes con hipercrecimiento prenatal:

- Síndrome de Marshall-Smith
- Síndrome de Elejalde
- Síndrome de Nevo
- · Otros asociados con hipercremiento postnatal


Respecto a la historia clínica, se debe investigar la presencia de antecedentes familiares en tres generaciones (indagar presencia de osteoartritis precoz, prótesis de cadera, tallas muy bajas).

Recoger los datos somatométricos del recién nacido; la presencia de fracturas patológicas, dolor articular, contracturas y/o limitación al movimiento. Valorar retrasos de desarrollo psicomotor.

En la exploración se realizará medición completa que incluye además de Peso, Talla y perímetro craneal. La braza y el segmento inferior; y si los miembros son cortos se evaluará si la cortedad es rizomiélica, mesomiélica o acromiélica.

Valorar la actitud de la marcha: la presencia de incurvaciones de huesos largos; la presencia de talipes (pies equino-varos) deformidades de Madelung; asimetrías, contracturas o hiperlaxitudes articulares. Valoración de las manos, dedos (braquidactilias, camtodactilias); alteraciones del pulgar. Es importante descartar otras malformaciones (ojos [cataratas, miopía, desprendimiento de retina]), hendiduras palatinas, anomalías dentarias; cardiopatías. Realizar exa-

men neurológico. Entre estas entidades habrá que descartar enfermedades de depósito.

El diagnóstico ha de basarse en datos clínicos y radiológicos que deberán confirmarse con estudio genético si está disponible: las displasias podrán clasificarse según la zona de hueso que se afecte en:

- Epifisaria, metafisaria, diafisaria, craneal, espondilar.
- Rizomiélica (segmento proximal de miembros), mesomiélica (medio) y acromiélica (distal).

Un grupo significativo de hipocrecimiento en población sindrómica es el crecimiento intrauterino retardado que puede ser asimétrico (de causa materno placentaria), generalmente suelen tener crecimiento recuperador tras el nacimiento; y el simétrico: con igual afectación de los tres parámetros (peso, talla y perímetro craneal) que suele ser de causa fetal; muchos de ellos son precoces y son de tipo genético; no suelen tener crecimiento recuperador, y deben incluirse como equivalente malformativo; podemos considerar tres grandes grupos: cromosómicos; los debidos a procesos disruptivos: tóxicos (alcohol fetal, tabaco fetal; fármacos: anticonvulsivantes (valproato fetal, difenil-hidantoina fetal) o infecciosos (CMW fetal, rubéola fetal, etc.) y los debidos a procesos sindrómicos (tabla 3).

HIPERCRECIMIENTO

Los síndromes con hipercrercimiento pueden ser de origen prenatal o postnatal. La importancia de estos síndromes estriba en el riesgo que tienen muchas de estas entidades para desarrollar tumores en su evolución v en la asociación de muchas de ellas con retraso mental.

PATOLOGÍA GONADAL ASOCIADA A SÍNDROMES DISMÓRFICOS

La segunda causa más frecuente de patología endocrinológica, tras los problemas de crecimiento son las alteraciones gonadales. En este grupo incluimos principalmente a los hipogonadismos. Los hipogonadismos se van a presentar en el varón como micropene o criptorquidia; y en ambos sexos como pubertades retrasadas o muy lentamente progresivas. Entre los hipogonadismos hipergonadotropos debemos considerar en la población femenina el síndrome de Turner en todos los retrasos puberales se solicitará cariotipo. El hipogonadismo hipergonadotropo también se asocia a múltiples síndromes malformativos entre ellos están el síndrome de Noonan. Las causas. tanto de hipogonadismos hipogonadotropos (hipotálamo-hipofisarias) como hipergonadotropos (gonadal) se exponen en la tabla 4.

Pubertad precoz

La pubertad precoz puede deberse a lesiones congénitas malformativas entre las que se incluyen: quistes aracnoideos, hidrocefalia, hamartomas hipotalámicos, mielomeningoceles, quistes supraselares, etc.; en la tabla 4 se incluyen malformaciones y síndromes que pueden manifestarse como pubertad precoz. Entre los síndromes que pueden manifestarse como pubertad precoz periférica está el síndrome de McCune-Albright, que presenta la tríada de manchas café con leche, displasia fibrosa poliostótica y alteraciones hormonales; la más frecuente es la pubertad precoz periférica; pe-

Tabla 4. Síndromes asociados a patología gonadal.

Hipogonadismos

1. Defectos congénitos asociados a hipogonadismo hipogonadotropo:

- Panhipopituitarismo
- Déficit de gonadotropinas + anosmia (síndrome de Kallmann)
- Déficit de gonadotropinas por alteración receptor GnRH
- Deficiencia aislada de LH
- Deficiencia aislada e idiopática de gonadotropinas
- Deficiencia de gonadotropinas asociada a hipoplasia suprarrenal congénita ligada al cromosoma X (alteración DAX-1)

2. Defectos congénitos asociados a hipogonadismo hipergonadotropo:

- - Síndrome de Klinefelter y variantes
 - Anorquia
- Mujer:
 - Síndrome de Turner y variantes
 - Disgenesia gonadal pura 46 XX o 46XY
 - Disgenesia gonadal mixta
 - Resistencia primaria del ovario
- Ambos:
 - Alteraciones congénitas receptores de gonadotropinas
 - Déficit de biosíntesis y acción periférica de estrógenos
 - Déficit de biosíntesis y acción periférica andrógenos

3. Síndromes asociados a hipogonadismos

- Síndrome de Prader-Willi. Hipogonadismo hipogonadotropo
- Síndrome de Bardet-Biedl. Hipogonadismo hipogonadotropo
- Síndrome de Cohen. Hipogonadismo hipogonadotropo
- Síndrome de Alstrom. Hipogonadismo hipogonadotropo
- Síndrome de Noonan. Hipogonadismo hiper-/hipogonadotropo
- Síndrome de Smith-Lemli-Opitz. Hipogonadismo hipergonadotropo
- Distrofia miotónica de steinert. Hipogonadismo hipergonadotropo
- Síndrome de Werner. Hipogonadismo hipergonadotropo

Pubertad precoz

1. Malformaciones:

- Hidrocefalia
- Microcefalias
- Craneosinostosis

2. Lesiones tumorales:

- Hamartomas
- Gliomas

3. Síndromes con hamartoma:

- Síndrome de Pallister-Hall
- Síndrome de Aicardi
- Esclerosis tuberosa

4. Síndromes con gliomas:

Neurofibromatosis tipo I

Disgenesias gonadales

- Síndromes de Smith-Lemli-Opitz
- Displasia campomélica (SOX9 y genes relacionados con SRY y 17q23-ter)
- Síndrome de Dennis-Drash/síndrome de Frasier
- Insensibilidad completa o parcial a los andrógenos por mutaciones en el receptor de andrógenos

ro también puede manifestarse con hipertiroidismo, acromegalia o síndrome de Cushing.

Disgenesia gonadal

La disgenesia gonadal es otra causa patológica frecuente en síndromes dismórficos; este grupo de síndromes van a manifestarse con Genitales ambiguos; algunos de los síndromes que pueden manifestarse con disgenesia se expresan en la tabla 4.

PATOLOGÍA TIROIDEA ASOCIADA A SÍNDROMES DISMÓRFICOS

El hipotiroidismo primario congénito puede acompañar a diferentes síndromes asociados a hipoacusia neurosensorial (síndrome de Pendred, síndrome de Alstrom), a atresia de coanas (CHARGE, Bamforth), a displasia ectodérmica; alteraciones cerebrales (síndrome cerebro-pulmón-Tiroides: tiro-cerebro-renal): v en otros síndromes como el Síndrome de Williams. Es obligado evaluar la función tiroidea siempre que nos encontremos con estas patologías (tabla 5).

La patología tiroidea autoinmune (tiroiditis linfocitaria) acompaña a un gran número de cromosomopatías; debido probablemente a una alteración del equilibrio inmunológico que produce mayor predisposición a enfermedades autoinmunes; muy frecuente el síndrome de Down; pero también en el síndrome de Turner y otros.

PATOLOGÍA PARATIROIDEA ASOCIADA A SÍNDROMES DISMÓRFICOS

El hipoparatiroidismo puede encontrarse en los síndromes de microdeleción del cromoso-

ma 22 g (CATCH 22) y los síndromes relacionados con esta deleción como el velo-cardio-facial y el síndrome de Di George, que pueden asociar a un fenotipo peculiar, cardiopatía (defectos cono-truncales, defectos septales), inmunodeficiencia (celular) e hipocalcemia (hipoparatiroidismo). El hipoparatiroidismo también puede asociarse a otras situaciones como asociación CHARGE, en síndrome de Kenny-Caffey y asociado a linfedema congénito. También podemos incluir en este grupo a los pseudohipoparatiroidismos, entre ellos al tipo IA, osteodistrofia hereditaria de Albright, que presenta un fenotipo característico asociado a hipocalcemia con elevación de PTH (tabla 5).

PATOLOGÍA SUPRARRENAL ASOCIADA A SÍNDROMES DISMÓRFICOS

La patología suprarrenal se asocia a un grupo de entidades genéticas, pudiendo manifestarse como insuficiencia suprarrenal en síndrome de Allgrove, adrenoleucodistrofia y alteración en el gen DAX, situado en el brazo corto del cromosoma X; puede dar lugar a un síndrome de deleción de genes contiguos (hipoplasia suprarrenal, enfermedad de Duchenne, déficit de glicerol-kinasa) o asociación de alteración del gen DAX e hipogonadismo hipogonadotropo. Otras entidades pueden manifestarse con feocromocitoma (neurofibromatosis tipo I, el síndrome de Von-Hippel-Lindau) (tabla 5).

DIABETES ASOCIADA A SÍNDROMES DISMÓRFICOS

Hay varios tipos de diabetes que pueden acompañar a los síndromes dismórficos. Un tipo de diabetes secundaria asociado con re-

Tabla 5. Síndromes asociados a patología tiroidea, paratiroidea, suprarrenal, diabetes mellitus y obesidad.

Patología tiroidea

- 1. Síndromes con hipoacusia neurosensorial:
 - Síndrome de Alstrom
 - Síndrome de Pendred
- 2. Síndromes con anomalias en linea media (atresia coanal/anom. nasales):
 - Síndrome de Johanson-Blizzard
 - Asociación CHARGE
 - Síndrome de Bamforth
 - Atresia coanas, hipotelia/atelia/tiroides pequeño/ausente
- 3. Síndromes con displasia ectodérmica:
 - Displasia ectodérmica tipo Fryns-Soekarman
- 4. Síndromes con afectacion cerebral:
 - Síndrome tirocerebrorrenal
 - Síndrome cerebro-pulmón-tiroides

Patología paratiroidea

- 1. Síndromes con hipoparatiroidismo:
 - CATCH 22:
 - Síndrome de Di George
 - Velo-Cardio-Facial
 - Asociación CHARGE
 - Nanismo de Mulibrey
 - Síndrome de Kenny-Cafey
 - Síndrome de linfedema-hipoparatiroidismo
- 2. Síndromes con pseudohipoparatiroidismo (P-HPT):
 - P-HPT Tipo I: osteodistrofia de Albright

Patología suprarrenal

- 1. Insuficiencia suprarrenal:
 - Síndrome de Allgrove (acalasia-suprarrenal hipoplasia-alácrima)
 - Adrenoleucodistrofia (insuficiencia suprarrenal-lesiones sustancia Blanca)
 - Síndrome de genes contiguos cromosoma Xp
 - Hipoplasia suprarrenal e hipogonadismo hipogonadotropo
- 2. Feocromocitoma:
 - Enfermedad de von -Hippel-Lindau
 - Neurofibromatosis tipo I

Diabetes mellitus

- 1. Diabetes insulinorresistente o asociada a hiperinsulinismo:
 - Síndromes con alteración en receptor de insulina:
 - Leprechaunismo
 - Síndrome de Rabson-Mendenhall
 - Síndromes asociados a lipodistrofia:
 - Síndrome de Berardinelli-Seip
 - Síndrome de Kobberling-Dunningan
 - Síndromes asociados a síndromes progeroides:
 - Síndrome de Werner
 - Síndromes asociados a obesidad e hipogenitalismo (ver "Obesidad asociada a síndromes malformativos")
 - · Otros síndromes:
 - Ataxia-telangiectasia
 - Distrofia miotónica de Steinnert
- 2. Diabetes mitocondrial:
 - Enfermedad de Kearns-Sayre
- 3. Diabetes mellitus insulinodependiente:
 - DIDMOAD

Tabla 5. Síndromes asociados a patología tiroidea, paratiroidea, suprarrenal, diabetes mellitus y obesidad.

Obesidad asociada a síndromes malformativos

- 1. Síndrome de Prader-Willi
- 2. Síndrome de Bardet-Biedl
- 3. Síndrome de Cohen
- 4. Síndrome de Carpenter
- 5 Síndrome de Alstrom
- 6. Osteodistrofia de Albright
- 7. Síndrome de Borjesson-Forsman-Lehman

sistencia a la insulina que puede verse en los síndromes de lipodistrofia generalizada (síndrome de Berardinelli-Seip; síndrome de Kobberling-Dunningan); asociado a síndromes progeroides como el síndrome de Werner: o en otros síndromes con alteración en el receptor de insulina, como el leprechaunismo o el síndrome de Rabson-Mendenhall: en síndromes asociados con obesidad, hipogenitalismo y retraso mental como el Prader-Willi, el síndrome de Bardet-Biedl: el síndrome de Alstrom y en otros síndromes como el síndrome de ataxia-telangiectasia, distrofia miotónica. La diabetes insulinodependiente puede asociarse con diabetes insípida, atrofia óptica y sordera como en el DIDMOAD y puede acompañar también a las enfermedades mitocondriales como Enfermedad de Kearns-Sayre (tabla 5).

OBESIDAD ASOCIADA A SÍNDROMES DISMÓRFICOS

Hay un grupo de síndromes malformativos que pueden asociarse a obesidad, hipogenitalismo y retraso mental (tabla 5)

La obesidad es una causa adquirida que acompaña a múltiples síndromes polimalformativos, y es debida a la suma de varios factores comola limitación al ejercicio físico que pueden tener, la medicación anticonvulsivante (ácido valproico) o la medicación para los trastornos de conducta (risperidona) que muchos utilizan; así como la dificultad para el control del apetito que estos pacientes suelen presentar.

Síndrome	Criterios clínicos mayores	Patología endocrinológica	Alteración genética
Aarskog faciodigitogenital, síndrome de	Facio- (hipertelorismo, nariz corta) -digito- (braquidactilia, defectos en dedos cisne) -genital (criptorquidia, escoto en chal)	Talla baja Pubertad retrasada	Gen FGD1. Xp11.21
Acondroplasia	Macrocefalia Puente nasal deprimido Hipoplasia malar Nanismo de miembros cortos	Talla baja	Gen FGFR3 4p16.3
Adrenoleucodistrofia	Insuficiencia suprarrenal primaria Enfermedad neurológica degenerativa Ácidos grasos de cadena larga elevados	Insuficiencia suprarrenal primaria	Gen ALD1 Xq28
Aicardi, síndrome de	Agenesia cuerpo calloso Espasmos infantiles Convulsiones Corioretinopatía Microftamia Polimicrogiria Retraso mental	Talla baja postnatal Pubertad precoz	Dominante ligado a X Xp22
Albright Osteodistrofia hereditaria	Obesidad, cara redonda, cuello corto talla baja, cataratas, calcificaciones cerebrales Retraso mental	Pseudohipoparatiroidismo Hipotiroidismo Obesidad Talla baja	Gen GNAs I. 20q13.2
Allgrove Alstrom	Acalasia-suprarrenal-alácrima síndrome Talla baja Obesidad truncal Hipoacusia neurosensorial Retinitis pigmentaria	Insuficiencia suprarrenal Diabetes insulinorresistente Hipogonadismo hipergonadotropo (varón) Diabetes insípida Hipotiroidismo Bocio multinodular Déficit de GH	Gen Aladin 12q13 Gen ALMS tipo I 2p12.3
Anemia de Fanconi	Aplasia/anomalías del pulgar Anemia Leucopenia Trombopenia Defecto cardiaco Malformación renal Otras	Talla baja Déficit de GH Hipogonadismo hipergonadotropo	Heterogen. genética
Aracnodactilia tipo Beals	Talla alta Hábito marfanoide Malformaciones de pabellón auricular Cardiopatía: defectos septales Prolapso valvular Artrogriposis distal	Talla alta	Gen FBN2 5q23-q31
Ataxia-telangiectasia	Ataxia progresiva Telangiectasia facial y conjuntival Retraso crecimiento Inmunodeficiencia Tumores	Hipogonadismo P. retrasada Diabetes mellitus. Intolerancia a la glucosa Talla baja Déficit de GH	Gen ATM 11q23

Síndrome	Criterios clínicos mayores	Patología endocrinológica	Alteración genética
Atresia coanal-atelia-agenesia tiroidea, síndrome de	Atresia coanas Atelia o hipotelia Tiroides ausente o pequeño Infecciones frecuentes	Hipotiroidismo congénito	Autosómico recesivo
Bamforth-Lazarus, síndrome de	Hipotiroidismo atireótico Pelo puntiagudo Atresia coanas Hendidura palatina Epiglotis bífida	Hipotiroidismo congénito	Factor de transcripción tiroides Gen FHKL15 9q22
Bannayan-Riley-Ruvalcaba, síndrome de	Macrocefalia. Lipomas viscerales Pólipos hamartomatosos Intestinales Máculas pigmentadas en pene. Retraso mental	Talla alta Tiroiditis de Hashimoto	Gen PTEN 10q22-23
Berardinelli Seip, síndrome de	Lipodistrofia generalizada Hipercrecimiento Apariencia musculosa Acantosis nigricans Hirsutismo Hiperinsulinismo Hipertrigliceridemia	Hiperinsulinemia Hiperglucemia Hipertrigliceridemia Niveles de leptina disminuidos	Mutación en gen Seipina (Gen BSCL) Hetrogeneidad genética (4 genes)
Bloom, síndrome de	Eritema telangiectásico piel Talla baja. Infecciones bronco-pulmonares. Roturas cromosómicas	Diabetes mellitus No Insulin D. Talla baja. Déficit de GH	Mutación Gen RCQL3
Borjeson-Forssman-Leman, síndrome de	Retraso mental, covulsiones, facies tosca, anillos supraorbitarios prominentes, orejas grandes, obesidad, talla baja, dedos cortos, hipogonadismo	Talla corta. Obesidad Hipogonadismo (Criptorquidia, micropene)	Mutaciones en gen PHF6. Xq26.3 Portadoras clínica leve
Carpenter acrocéfalo-polisindactilia tipo II, síndrome de	Acro-turricefalia Polidactilia preaxial Braquidactilia, sindactilia Obesidad Defectos cardiacos Retraso mental variable Dismorfias faciales	Obesidad Talla baja < P25	Mutación en gen RAB23 asociada a proteína-RAS 6p12.1-q12
Cerebro-pulmón-tiroides, síndrome	Coreoatetosis Neumopatía crónica precoz Hipotiroidismo congénito	Hipotiroidismo congénito	Gen TITF1 14q13
CHARGE, asociación	C: colobomas oculares H: cardiopatía (def. septal, Fallot) A: atresia de Coanas R: retraso mental G: hipogenitalismo (criptorquidia) E: malformación P A, oído interno. Hipoacusia	Deficiencia GH Hipoplasia paratiroidea Deficiencia gonadotropinas	Mutación CHD7 8q12.1

Síndrome	Criterios clínicos mayores	Patología endocrinológica	Alteración genética
Cohen, síndrome de	Hipotonía, microcefalia, incisivos prominentes Retraso mental no progresivo Talla baja Filtro corto Manos estrechas Obesidad Coriorretinitis	Obesidad truncal Pubertad retrasada Deficiencia GH	Mutación gen COH1 8q22
Deleción genes contiguos cromosoma X	Hipoplasia suprarrena Distrofia muscular Duchenne Déficit de glicerol-cinasa Hipertrigliceridemia Retraso mental	Insuficiencia suprarrenal primaria	Gen distrofina Xp21.2 Gen DAX1 Xp21.3-p21.2 Gen GK Xp21.3-p21.2
DIDMOAD, síndrome	DI: diabetes insípida DM: diabetes mellitus OA: atrofia óptica D: sordera neurosensorial	Diabetes mellitus Diabetes insípida Hipotiroidismo	Heterogeneidad genética Gen WFS1 4p16.1 Gen WFS2 4q22q24 Mutaciones mitocondriales
Di George, síndrome de	Hiperterolismo PA descendidos Defectos conotruncales cardiacos Hipoplasia tímica Inmunodeficencia celular Hipocalcemia Hipo-PTH	Hipocalcemia Hipoparatiroidismo	CATCH22 22q11.2-
Displasia campomélica	Nanismo con miembros cortos Puente nasal plano Micrognatia Paladar hendido Hipoplasia de escápula Genitales ambiguos	Nanismo miembros cortos Fenotipo femenino XY	Gen SOX9 17q24.3q25.1
Displasia ectodérmica tipo Fryns-Soeckarman	Displasia ectodérmica hipohidrótica Agenesia cuerpo calloso Retraso mental severo Hipotiroidismo	Hipotiroidismo congénito	Probable AD
Displasia mesomiélica de Langer	Nanismo con cortedad mesomiélica Incurvación de radio y tibia Micrognatia	Talla muy baja	Alteración gen SHOX
Displasia septoóptica	Ausencia de septum pellucidum Defectos cerebrales línea media Hipoplasia nervios ópticos Defectos hormonales	Hipoplasia hipófisis anterior Pituitaria posterior ausente o ectópica Panhipopituitarismo Diabetes insípida	Gen HESX 1 3p21.2 p21.1

Sindrome	Criterios clínicos mayores	Patología endocrinológica	Alteración genética
Distrofia miotónica de Steinnert, síndrome de	Miotonía Hipotonía (forma neonatal) Cataratas, criptorquidia, microtestes Retraso leve-moderado Retraso severo (neonatal)	Hipogonadismo hipergonadotropo Diabetes Obesidad	Tripletes CTG > 50 gen DMPK 19q13.2 q13.3 3q13.3 q24
Denys-Drash, síndrome de	Pseudohermafroditismo masculino Genitales ambiguos Síndrome nefrótico Tumor de Wilms	Disgenesia gonadal	Gen WT1 11p13
Down, síndrome de	Fenotipo Down Hipotonía Retraso mental Defecto septal (Canal A-V, CIA, CIV).	Tiroiditis linfocitaria	Trisomia primaria Cromosoma 21
EEC, síndrome	E: ectrodactilia-sindactilia E: displasia ectodérmica C: cleft: labio y/o paladar hendido	Defecto GH. Hipogonadismo hipogonadotropo. Diabetes Insípida central	Heterogen. Genética Gen EEC1, EEC3 7q11.2-q21.3
Esclerosis tuberosa	Manchas depigmentadas piel Adenoma sebáceo Hamartomas renales Rabdomiomas cardiacos Convulsiones Retraso mental	Pubertad precoz Hipotiroidismo	Gen TSC1 9q34 16p13.3
Frasier, síndrome de	Pseudohermafroditismo masculino Glomeruloesclerosis focal y segmentaria Gonadoblastoma	Disgenesia gonadal pura	Gen WT1 11p13
Gigantismo cerebral	Talla alta Macrocefalia Frente abombada Mentón puntiagudo Ventriculomegalia Retraso mental	Talla alta Predisposición a tumores	Gen NSD 5q35 Microdeleccion 5q35
Johansson-Blizzard, síndrome de	Hipoplasia alas nasales Hipotiroidismo Insuficiencia pancreática exocrina Defecto de scalp Pelo puntiagudo Hipodontia	Hipotiroidismo (30%) Diabetes mellitus Hipocalcemia	Gen UBR1 15q15-q21.1
Kallman, síndrome de	Anosmia Hipogonadismo hipogonadotropo Agenesia renal Criptorquidia Micropene	Hipogonadismo hipogonadotropo	Heterogeneidad genética Xp22.32 8p11.2-p11.1
Kearns-Sayre, síndrome de	Oftalmoplejia Retinitis pigmentosa Cardiomiopatía Bloqueo AV Disfunción cerebelosa	Diabetes mellitus Hipoparatiroidismo Enfermedad de Addison	Mutación ADN mitocondrial

Sindrome	Criterios clínicos mayores	Patología endocrinológica	Alteración genética
Kenny-Caffey, sindrome de	Talla baja proporcionada Retraso cierre fontanela Anomalías oculares Hipocalcemia Hipo-PTH Convulsiones	Hipocalcemia, hipofosforemia transitorias Disminución de PTH y calcitonina Talla baja	A. dominante ligado a X Variabilidad fenotipica 1q42-q43
Klinefelter, síndrome de	Testes pequeños Criptorquidia Distribución ginoide grasa Retraso mental en variantes Klinefelter	Talla alta Hipogonadismo hipergonadotropo Esterilidad	47 XXY Otros 48 XXYY, etc.
Kobberling-Dunningan, sindrome	Lipodistrofia parcial que afecta a cráneo y cara Diabetes insulinorresistente Acantosis nigricans Hipertrigliceridemia Esteatosis	Hiperinsulinismo Hiperglucemia Hipertrigliceridemia Disminución de HDL	Mutación gen Laminina A/C (LMNA) 1q21-q23
Leprechaunismo	CIR Fallo de crecimiento Aspecto progeroide Hirsutismo Labios gruesos Orejas grandes Infecciones frecuentes Hiperinsulinismo	Hiperinsulinismo Hiperglucemia Pubertad precoz	Mutación gen receptor insulina 19p13.2
Leri-Weil, síndrome de	Hipocrecimiento mesomiélico Deformidad de Madelung Paladar ojival Micrognatia Cuello corto	Talla baja postnatal	Gen SHOX Alteración en región PAR1 (Xp)
Linfedema-hipoparatiroidismo, síndrome de	Linfedema congénito, hipoparatiroidismo, neuropatía Prolapso de válvula mitral Talla corta, braquidactilia	Talla baja Hipoparatiroidismo	Autosómico recesivo
MULIBREY, síndrome	MU: debilidad muscular LI: hepatomegalia BR: ventriculomegalia, CI normal EY: hipoplasia coroides, alt. pigmentación retina	Talla corta pre- y postnatal Hipoparatiroidismo	Mutación en gen TRIM37 17q22-q23
Neurofibromatosis tipo I, síndrome de	Manchas CAL Neurofibromas Pecas axilares Nódulos de Lish en Iris Glioma vía óptica Pseudoartrosis tibia Predisposición tumores	Pubertad precoz Feocromocitoma	Gen NF1 17q11.2 A. D.

Síndrome	Criterios clínicos mayores	Patología endocrinológica	Alteración genética
Noonan, síndrome de	Estenosis valvular pulmonar Miocardiopatía Critorquidia Ptosis palpebral Pectus excavatum/carinatum Cuello corto y ancho	Talla baja postnatal Hipogonadismo (ocasional)	Gen PTPN11 12q24.1 Gen SOS 12p12.1
Pallister-Hall, síndrome de	CIR Polidactilia postaxial Hamartoblastoma hipotalámico Ano imperforado Epiglotis bífida Hendidura laríngea	Panhipopituitarismo Hipoplasia glándulas suprarrenales Displasia/aplasia tiroidea	Gen GLI 3 7p13
Partington, síndrome de	Retraso mental Facies triangular Contracturas articulares Disartria Covulsiones	Talla alta	Gen ARX Xp22.1-p22.3
Pendred, síndrome de	Bocio disenzimático Hipoacusia neurosensorial Anomalías coclea	Bocio eutiroideo/hipotiroideo defecto organificación HT	Gen PDS 7q31
Perlman, síndrome de	Macrosomía Polihidramnios Facies hipotónica Puente nasal plano Displasia renal Nefroblastomatosis	Hiperinsulinismo Hipoglucemia	A.R.
Prader-Willi, síndrome de	Hipotonía neonatal Hipogonadismo Retraso mental Obesidad Hendiduras palpebrales almendradas Micrognatia Acromicria	Hiperinsulinismo Obesidad Deficiencia de GH Hipogonadismo hipogonadotropo	Deleción o disomía en región 15q11-q13 de cromosoma paterno
Pseudoacondroplasia	Nanismo miembros cortos Miembros curvados No dismorfias faciales Laxitud articular	Talla baja Displasia ósea	Gen COMP 19p13.1
Rabson-Mendenhall, síndrome de	Resistencia insulina Hiperplasia pineal Displasia de uñas y dientes Acantosis nigricans Cara tosca Macrogenitosomía	Diabetes mellitus Diabetes Mellitus insulinorresistente Cetoacidosis diabética Alteración secreción melatonina Pubertad precoz	Mutación gen receptor de Insulina 19p13-2
Rieger, síndrome de	Malf. cámara anterior ojo (hipoplasia, disgenesia de iris) Hipodontia Hipoplasia maxilar Estenosis, atresia anal	Déficit de GH aislado	Heterogeneidad genética Factor de transcripción PITX2 Gen RIEG2 4q25-q26 13q14

Sindrome	Criterios clínicos mayores	Patología endocrinológica	Alteración genética
Rubinstein-Taybi, síndrome	Microcefalia Hendiduras palpebrales hacia abajo Facies sonriente Pulgares anchos y angulados Retraso mental	Talla baja postnatal	Deleción 16 p13.3 Gen CREBBP 22q13
Silver-Russell, síndrome de	CIR Asimetría parcial o total corporal Desproporción craneofacial Facies triangular Clinodactilia 5.º dedo	Hipoglucemia de ayuno Déficit de GH en alguno casos	Heterogeneidad genética DUP Cr.7
Seckel, síndrome de	CIR severo Microcefalia Nariz en pico Retraso mental Micrognatia	Talla baja pre- y postnatal severa (–7 DS)	Heterogeneidad genetica 4 genes SCKL
Smith-Lemli-Opitz, síndrome de	CIR Fallo de crecimiento pre- y postnatal Microcefalia Ptosis Defectos cardiacos septales Polidactilias/sindactilias Genitales ambiguos Criptorquidia Retraso mental	Colesterol bajo 7-dehidrocolesterol alto Retraso de peso y talla pre- y postnatal	Gen SLO 11q12-q13
Tiro-cerebro-renal, síndrome	Ataxia, debilidad muscular Bocio coloide Nefropatía intersticial tubular	Bocio coloide Hipotiroidismo	Autosómico recesivo
Turner, síndrome de	Monosomía total o parcial cromosoma X Disgenesia gonadal Talla baja Linfedema pies Cuello corto Fenotipo Turner (facies triangular, PA descendidos)	Talla baja Hipogonadismo Hipergonadotropo	Monosomía parcial o total de cromosoma X de parte o todas las células
Velo-cardio-facial, síndrome	Fisura Palatina Macizo facial medio alargado Defecto septal ventricular/tetralogía de Fallot Retraso mental	Hipoparatiroidismo Hipocalcemia	CATCH22 22q11-
Von-Hippel-Lindau, síndrome de	Hemangioblastomas retinianos y cerebelosos También otras localizaciones Predisposición a diversos tumores	Feocromocitoma	Gen VHL 3p26-25
WAGR, síndrome	W: tumor de Wilms A: aniridia G: hipospadias, criptorquidia R: retraso mental	Disgenesia gonadal	Microdeleccion 11p13

Sindrome	Criterios clínicos mayores	Patología endocrinológica	Alteración genética
Weaver, síndrome de	Hipercrecimiento pre- y postnatal Macrocefalia Frente ancha Hipertelorismo Camtodactilia Retraso psicomotor	Talla alta Predsposición a tumores	Gen NSD 5q35
Werner, sindrome de	Envejecimiento prematuro Canicie precoz Cataratas Cambios esclerodermiformes piel Ateroesclerosis Osteoporosis precoz	Diabetes mellitus insulinorresistente Hipogonadismo	Gen RECQL2 8p12-p11.2
Wiedemann-Beckwith, síndrome de	Macrosomía Macroglosia Onfalocele Visceromegalia Cresta lóbulo oreja Hemihipertrofia	Hipoglucemia (nesidioblastosis) algunos	Varias alteraciones genéticas (DUP, mut. centro impronta, etc.) Reg WBS 11p15.4-pter
X frágil, síndrome	Pabellones auriculares grandes Macroorquidismo Hiperlaxitud articular Pies planos Prolapso válvula mitral	Pubertad precoz Obesidad	FRAX A Xq27.3

BIBLIOGRAFÍA RECOMENDADA

- Argente Oliver J, Carrascosa Lezcano A, García Brouthelier R, Rodríguez Hierro F. Tratado de Endocrinología pediátrica y del adolescente, 2.ª ed. Ediciones Doyma.
- Barrionuevo Porras JL, Sánchez del pozo J, Gallego Gómez ME, Lledó Valera G. Aspectos endocrinológicos de los síndromes dismórficos. Endocrinología Pediátrica y del adolescente; 1994.
- Bermejo Sánchez E, Martínez Frías ML. Vigilancia epidemiológica de anomalías congénitas en España en el periodo 1980-1999. Boletín del ECEMC. Revista de Dismorfología y Sindromología. 2000;IV(5):27-98.

- Bermejo Sánchez E, Martínez-Frías ML. Vigilancia epidemiológica de anomalías congénitas en España en los últimos 21 años (Periodo 1980-2000). Boletín del ECEMC: Revista de Dismorfología y Epidemiología. Número especial: 25 años (1976-2001) Pág. 47-119
- Buyse ML, Dover MA (eds.). Birth Defects Encyclopedia. The Center for Birth Defects Information Services, Inc. Blackwell Scientific Publications; 1990.
- Cohen MM. The child with multiple defects. Ed. Oxford university press; 1997.
- Firth Helen V. Hurt Jane A. Oxford desk reference. Clinical genetics. Ed. Oxford University Press; 2003.

- Goodman Richard M, Gorlin Robert J, The Malformed infant and child an illlustrated guide. Ed. Oxford university press; 1983.
- Pombo Arias M. Tratado de Endocrinología pediátrica, 4.ª ed. Ed. MacGraw-Hill; 2009.

BASES DE DATOS RECOMENDADAS

- 1. Base de Datos de Enfermedades Raras ORPHA-NET: www.orpha.net
- 2. Bankier A, Rose CM, Aymé S, Chemke J, Danks DM. Donnai D et al. POSSUM Web. Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia. 1984-2004 Murdoch Childrens Research Institute: www. possum.net.au
- 3. OMIM® is authored and edited at the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, under the direction of Dr. Ada Hamosh http://www.ncbi.nlm.nih.gov/omim/